A Na+ Superionic Conductor for Room-Temperature Sodium Batteries

نویسندگان

  • Shufeng Song
  • Hai M. Duong
  • Alexander M. Korsunsky
  • Ning Hu
  • Li Lu
چکیده

Rechargeable lithium ion batteries have ruled the consumer electronics market for the past 20 years and have great significance in the growing number of electric vehicles and stationary energy storage applications. However, in addition to concerns about electrochemical performance, the limited availability of lithium is gradually becoming an important issue for further continued use and development of lithium ion batteries. Therefore, a significant shift in attention has been taking place towards new types of rechargeable batteries such as sodium-based systems that have low cost. Another important aspect of sodium battery is its potential compatibility with the all-solid-state design where solid electrolyte is used to replace liquid one, leading to simple battery design, long life span, and excellent safety. The key to the success of all-solid-state battery design is the challenge of finding solid electrolytes possessing acceptable high ionic conductivities at room temperature. Herein, we report a novel sodium superionic conductor with NASICON structure, Na3.1Zr1.95Mg0.05Si2PO12 that shows high room-temperature ionic conductivity of 3.5 × 10(-3) S cm(-1). We also report successful fabrication of a room-temperature solid-state Na-S cell using this conductor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor

All-solid-state sodium-ion batteries are promising candidates for large-scale energy storage applications. The key enabler for an all-solid-state architecture is a sodium solid electrolyte that exhibits high Na(+) conductivity at ambient temperatures, as well as excellent phase and electrochemical stability. In this work, we present a first-principles-guided discovery and synthesis of a novel C...

متن کامل

Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.

Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safet...

متن کامل

Antiperovskite Li3OCl Superionic Conductor Films for Solid‐State Li‐Ion Batteries

Antiperovskite Li3OCl superionic conductor films are prepared via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. The applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

متن کامل

Vacancy‐Contained Tetragonal Na3SbS4 Superionic Conductor

Tetragonal Na3SbS4 is synthesized as a new sodium superionic conductor. The discovery of Na vacancies experimentally verifies previous theoretical predictions. Na vacancies, distorted cubic sulphur sublattices and large Na atomic displacement parameters lead to the ionic conductivity as high as 3 mS cm-1, a value significantly higher than those of state-of-the-art sodium sulfide electrolytes.

متن کامل

Design and synthesis of the superionic conductor Na10SnP2S12.

Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016